Дипломные работы бесплатно
курсовые, дипломы, контрольные, рефераты
Заказать
   » Главная  » Математика  » Использование тригонометрических рядов для построения решений линейных дифференциальных уравнений

 


Введение…………………………………………………………………….……………..3

Глава I……………………………………………………………………….……………..6

Тригонометрические ряды, их свойства………………….…………….………………..6

1.1 Свойства тригонометрического ряда Фурье………..…….…………………………8

1.2 Разложение функций в ряд Фурье………………….….…………………………….9

1.3 Постановка вопроса, интеграл Дирихле……………….…………………….……10

1.4 Сходимость ряда Фурье. Леммы и теоремы………………………………………11

1.5 Интеграл Фурье……….……………………………………………………………...21

Глава II……………………………………………………………………………………29

Периодические решения дифференциальных уравнений. Основной принцип в теории решений ДУ……………………………………………………………………...29

2.1. Отображение за период. Основной принцип……………………………………...29

2.2 Отражающая функция……………………………………………………………….33

Глава III…………………………………………………………………………………..38

Построение периодических решений линейных ДУ…………………………………..38

3.1 Построение систем по данной отражающей функции…………….………………38

3.2 Почти периодические функции и почти периодические решения дифференциальных уравнений………………………………………………………….46

3.3 Построение почти периодических решений линейных дифференциальных и интегродифференциальных уравнений с отклоняющимися коэффициентами……...50

Заключение…………………………………………………………………………….....58

Список использованных источников…………………………………………………...59

В науке и технике часто приходится иметь дело с периодическими явлениями, т.е. такими явлениями, которые воспроизводятся в прежнем виде через определенный промежуток времени , называемый периодом. Примером может служить установившееся движение паровой машины, которая по истечении определенного числа оборотов снова проходит через свое начальное положение, затем явление переменного тока и т.п. Различные величины, связанные с рассматриваемым периодическим явлением, по истечении периода возвращаются к своим прежним значениям и представляют, следовательно, периодические функции от времени , характеризуемые равенством .

Простейшей из периодических функций (если не считать постоянной) является синусоидальная величина: , где есть "частота", связанная с периодом соотношением

(1.1)

Из подобных простейших функций могут быть составлены и более сложные. Ясно, что составляющие синусоидальные величины должны быть разных частот, т.к. сложение синусоидальных величин с одной частотой дает снова синусоидальную величину, причем с той же частотой. Возьмем величины вида:

(1.2)

которые, если не считать постоянной, имеют частоты кратные наименьшей из них, , и периоды . При их сложении получится периодическая функция (с периодом ), но уже существенно отличная от величин типа (1.2).

1. Гохберг И.Ц., Крупник Н.Л. Введение в теорию одномерных сингулярных интегральных операторов. Кишенев: Штиинца, 1973, 426 с.

2. Кудрявцев Л.Д. Курс математического анализа, том II, М.: Высшая школа, 1981

3. Левитан Б.М. Почти периодические функции. М.: Гостехтеоретиздат, 1953. 396 с.

4. Мироненко В.И. Отражающая функция и периодические решения дифференциальных систем. Гомель: ГГУ, 1985

5. Панков А.А. Ограниченные и почти периодические решения нелинейных дифференциально-операторных уравнений. Киев: Наук. Думка, 1985, 181с.

6. Пискунов Н.С. Дифференциальное и интегральное исчисления, том II, М.: Интеграл - Пресс, 2001

7. Пуляев В.Ф. Ограниченные и почти периодические решения нелинейных интегральных уравнений // Дифференциальные уравнения, 1989. - Т.25. - №10. - с.1787 - 1798.

8. Рудин У. Основы математического анализа М.: Мир,1966.

9. Сансоне Дж. Обыкновенные дифференциальные уравнения, том I, М.: Издательство иностранной литературы, 1953

10. Г.М. Фихтенгольц. Курс дифференциального и интегрального исчисления, том III. M.: Физматгиз,1963

Примечаний нет.

 

Дисциплина: Математика